
Stack Based Attacks in Linux
(an intro)

Saint Louis Linux Users Group (STLLUG)

Bryce L. Meyer
April 20th, 2023

Overview

• From Weakness to Exploit: What makes a hole…
• Programs in Memory 101, where they go, what happens at runtime
• Aleph One’s Famous Paper and Stack Overflow Basics

• Simple Stack Overflow
• What is shellcode?
• NOP Sleds

• The Arms Race: Linux overflow preventers, and work arounds
• 64-bit v. 32-bit
• Stack Canaries
• NX Bit and ROP
• Address Space Randomization

• Do they still exist?

Several example code segments herein
come from the book Grey Hat Hacking,
6ed:..get it!!!
Gray Hat Hacking: The Ethical Hacker's
Handbook, Sixth Edition, 6th Edition
[Book] (oreilly.com)
https://www.oreilly.com/library/view/gray
-hat-hacking/9781264268955/

Note: most slides are extracted
from a course I developed and
teach at Franciscan University of
Steubenville…it uses the Grey
Hat Hacking textbook, and a lab
we built called the Danger lab

https://www.oreilly.com/library/view/gray-hat-hacking/9781264268955/
https://www.oreilly.com/library/view/gray-hat-hacking/9781264268955/
https://www.oreilly.com/library/view/gray-hat-hacking/9781264268955/
https://www.oreilly.com/library/view/gray-hat-hacking/9781264268955/
https://www.oreilly.com/library/view/gray-hat-hacking/9781264268955/

Chain of Danger (Meyer)

A weakness is included
by accident or on

purpose
Specific

vulnerability is
found or developed
against a weakness

A way to use
(exploit) the

vulnerability is found
System is affected

(via a threat)

Quality measures or
reviews prevent weakness

Improvements in software or
system remove vulnerability
for remaining weaknesses

Measures in system and
software limit affect of

failures and compromises

Repeating process

See another method:
https://www.eccouncil.org/cybersecuri
ty-exchange/threat-intelligence/cyber-
kill-chain-seven-steps-cyberattack/

And another:
https://www.lockheedmartin.com/en-
us/capabilities/cyber/cyber-kill-
chain.html

https://www.eccouncil.org/cybersecurity-exchange/threat-intelligence/cyber-kill-chain-seven-steps-cyberattack/
https://www.eccouncil.org/cybersecurity-exchange/threat-intelligence/cyber-kill-chain-seven-steps-cyberattack/
https://www.eccouncil.org/cybersecurity-exchange/threat-intelligence/cyber-kill-chain-seven-steps-cyberattack/
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html

SEI CERT Coding Standards
for C, C++, Java, Perl, and

Android
OWASP Top 10 (et al.)
and Attack Scenarios

MITRE CVE (Common
Vulnerabilities and

Exposures)

MITRE CWE
(Common
Weakness

Enumeration)

NIST NVD (National
Vulnerability Database)

MITRE ATT&CK: Technique

Feeds
MITRE ATT&CK: Tactic

MITRE ATT&CK: Mitigation

IEEE and ISO
Standards (e.g.,

ISO/IEC 9899:2018)+
Compilers

Maps

NSA Top 25

CWE/SANS Top 25

MITRE CAPEC (Common Attack Pattern
Enumerations and Classifications)

ATT&CK: system and
network focused;

CAPEC: application focused

Listed from

Listed from

MISRA C and C++
Standards

Maps

Maps

Maps

Where can I find threats?
Maps

NIST CRC

CISANSA
+

DoD

MITRE

SEI (CERT)

MISRA

IEEE

ISO

SANS

OWASP

https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards
https://owasp.org/www-project-top-ten/
https://cve.mitre.org/
https://cwe.mitre.org/
https://nvd.nist.gov/
https://attack.mitre.org/
https://attack.mitre.org/
https://attack.mitre.org/
https://wiki.sei.cmu.edu/confluence/display/c/AA.+Bibliography#AA.Bibliography-ISO-IEC9899-2011
https://www.cisa.gov/uscert/ncas/alerts/aa21-209a
https://www.sans.org/top25-software-errors/
https://capec.mitre.org/
https://www.misra.org.uk/
https://www.misra.org.uk/
https://csrc.nist.gov/

Weaknesses of concern here

• CWE - CWE-1218: Memory Buffer Errors (4.10) (mitre.org)
• CWE - CWE-787: Out-of-bounds Write (4.10) (mitre.org)
• CWE - CWE-121: Stack-based Buffer Overflow (4.10) (mitre.org)
• CWE - CWE-788: Access of Memory Location After End of Buffer

(4.10) (mitre.org)

https://cwe.mitre.org/data/definitions/1218.html
https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/data/definitions/121.html
https://cwe.mitre.org/data/definitions/788.html
https://cwe.mitre.org/data/definitions/788.html

Coding that Leads to Vulnerabilities (A few)

• MEM35-C. Allocate sufficient memory for an object - SEI CERT C
Coding Standard - Confluence (cmu.edu)

• STR31-C. Guarantee that storage for strings has sufficient space for
character data and the null terminator - SEI CERT C Coding Standard -
Confluence (cmu.edu)

• ARR30-C. Do not form or use out-of-bounds pointers or array
subscripts - SEI CERT C Coding Standard - Confluence (cmu.edu)

SEI CERT Coding Standards - CERT Secure Coding - Confluence (cmu.edu)
https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards

https://wiki.sei.cmu.edu/confluence/display/c/MEM35-C.+Allocate+sufficient+memory+for+an+object
https://wiki.sei.cmu.edu/confluence/display/c/MEM35-C.+Allocate+sufficient+memory+for+an+object
https://wiki.sei.cmu.edu/confluence/display/c/STR31-C.+Guarantee+that+storage+for+strings+has+sufficient+space+for+character+data+and+the+null+terminator
https://wiki.sei.cmu.edu/confluence/display/c/STR31-C.+Guarantee+that+storage+for+strings+has+sufficient+space+for+character+data+and+the+null+terminator
https://wiki.sei.cmu.edu/confluence/display/c/STR31-C.+Guarantee+that+storage+for+strings+has+sufficient+space+for+character+data+and+the+null+terminator
https://wiki.sei.cmu.edu/confluence/display/c/ARR30-C.+Do+not+form+or+use+out-of-bounds+pointers+or+array+subscripts
https://wiki.sei.cmu.edu/confluence/display/c/ARR30-C.+Do+not+form+or+use+out-of-bounds+pointers+or+array+subscripts
https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards
https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards

Tools
Tools you will need:
• gcc or similar compiler
• gdb w/GEF or similar debugger: need these to map out

program memory
• w/ Kali (make sure you installed these):

• python3 Python interpreter
• Pwntools: toolbox of tools to aid in overflow hacks
• Ropper: Make ROP shellcode
• One_gadget: find gadgets for ROPs
• vmmap (in GEF): maps memory use

https://www.kali.org/
https://packages.debian.org/buster/python3
https://github.com/Gallopsled/pwntools
https://github.com/sashs/Ropper
https://github.com/david942j/one_gadget
https://github.com/hugsy/gef-legacy/blob/master/docs/commands/vmmap.md

pwntools: CTF Framework and Exploit
Development Library
• CTF Framework: Capture the Flag (CTF) set of tools and libraires to

enable red teaming competitions
• pwntools: a CTF framework and exploit development library

collection of many tools and methods
• Pwnlib has the tools you can invoke and use
• Disassemblers, assemblers, ELF resolvers, exploit examples and

primitives, to make paylods, etc.
• Popular with script-kiddies
• Lots of python code

Text p. 64-66https://docs.pwntools.com/en/latest/
https://github.com/Gallopsled/pwntools-tutorial#readme
https://pwntools.readthedocs.io/en/latest/tubes.html

https://docs.pwntools.com/en/latest/
https://github.com/Gallopsled/pwntools-tutorial#readme
https://pwntools.readthedocs.io/en/latest/tubes.html

Compiler Warnings
to prevent
overflows
(in this case gcc)

Compilers often catch
security issues in warnings…
It is critical in real life that
YOU DO NOT TURN THEM
OFF for deployed code…
Static Analysis and Linting
SW should catch the same
issues too.

$ gcc vuln.c -o vuln
vuln.c: In function ‘auth’:
vuln.c:24:5: warning: ‘read’ writing 512 bytes into a region of size 64 overflows the
destination [-Wstringop-overflow=]

24 | read(connfd, buf, 512);
| ^~~~~~~~~~~~~~~~~~~~~~

vuln.c:23:10: note: destination object ‘buf’ of size 64
23 | char buf[BUFLEN];

| ^~~
In file included from vuln.c:5:
/usr/include/unistd.h:371:16: note: in a call to function ‘read’ declared with attribute
‘access (write_only, 2, 3)’
371 | extern ssize_t read (int __fd, void *__buf, size_t __nbytes) __wur

| ^~~~
vuln.c:24:5: warning: ‘read’ writing 512 bytes into a region of size 64 overflows the
destination [-Wstringop-overflow=]

24 | read(connfd, buf, 512);
| ^~~~~~~~~~~~~~~~~~~~~~

vuln.c:23:10: note: destination object ‘buf’ of size 64
23 | char buf[BUFLEN];

| ^~~
/usr/include/unistd.h:371:16: note: in a call to function ‘read’ declared with attribute
‘access (write_only, 2, 3)’
371 | extern ssize_t read (int __fd, void *__buf, size_t __nbytes) __wur

| ^~

Source Code from book Gray Hat
Hacking…a good text for this
stuff!!!...I compiled it on Kali :0)

Programs run in virtual memory

https://www.geeksforgeeks.org/memory-layout-of-c-program/

• Processes (programs) are loaded into memory in sections.
• .text: Text segment: Contains (binary) executable instructions, usually read-

only
• .data: Initialized Data Segment: portion of the virtual address space of a

program that contains the global variables and static variables initialized by
the program. Read only parts and writable parts.

• .bss: Uninitialized Data segment (block started by symbol): everything set as
0, or variables without an initial value set in the program

• Heap: Dynamic memory allocation area, starts at end of .bss and grows from
there into the ‘as needed’ part, uses malloc, realloc, and free to control it.

• Stack: Stores automatic variables, memory values and pointers, Last In First
Out, grows to address 0 (i.e. into the ‘as needed’ part). Memory units in the
stack are called frames.

• Env(ironment)/Arg(uments):Where system-level variables are stored that
control programs, such as path, shell name, hostname, etc.

https://www.geeksforgeeks.org/memory-layout-of-c-program/

Stack Operations
• Every program has its own stack in virtual memory…
• Stack is First In Last Out (FILO=LIFO)
• Push: Add items to stack
• Pop: pull items from stack
• Call: invoke a section of code stored in memory
• Walk: incrementally read (or run) the values in the stack from first in to last in
• Trace: debugging result of executing or calling memory, a debugging walk
KEY POINTERS (32-bit, 64-bit=swap E for R, 16-bit=drop the E):
• ESP: Extended Stack Pointer: top of the (local) stack address (low address)
• EBP: Extended Base Pointer: bottom (high address) of current stack frame (aka FP)
• EIP: (real EIP) Extended Instruction Pointer: Track current memory being executed (called)

B
A

PUSHAPUSH C

B

PUSH

A

C
B

POP

A

B POP
A

POPA

https://en.wikipedia.org/wiki/Extended_memory

https://wiki.osdev.org/Stack

https://wiki.osdev.org/Stack_Trace

https://en.wikipedia.org/wiki/Function_prologue_and_epilogue
https://www.sans.org/blog/stack-canaries-gingerly-sidestepping-the-cage/

https://www.techtarget.com/whatis/definition/stack-pointer

https://en.wikipedia.org/wiki/Extended_memory
https://wiki.osdev.org/Stack
https://wiki.osdev.org/Stack_Trace
https://en.wikipedia.org/wiki/Function_prologue_and_epilogue
https://www.sans.org/blog/stack-canaries-gingerly-sidestepping-the-cage/
https://www.techtarget.com/whatis/definition/stack-pointer

Figuring out Stack Frames
• Track the current EIP, ESP, EBP
• Every line in the stack frame has a memory address in the stack (32-bit:

0xfffffff0 to 0x11111111 usually
• Lines in machine code are not the same space normally, they are .text…

STACK:
0xffff0004| +0x0004: 0xffffa0a0 // say_hi argument 1
0xffff0000| +0x0008: 0x0804845a // Return address from say_hi

Pointers:
EIP: 804840b (first line of say_hi)
ESP = 0xffff0000
EBP = 0xffff002c (room for say_hi’s frame, way above current lines in stack)

Address of stack line Value at address

ESP

Sometimes the stack line is called the
stack frame…be wary of context

Relative address of stack line

32-bit stack

High Memory
0xfffffff0

Low Memory
0x11111111

Stack
Growth

(i.e.
added

functions)

M
ain’s Saved EBP

.text .data .bss Heap (as needed) Stack Env/Arg

Higher addressesLower addresses

Saved EIP for
M

ain (‘0’)

Function’s Part of the Stack Main’s Part of the Stack

M
ain’s Argum

ents
(in reverse order)

M
ain’s Local

(defined) Variables

Function1’sSaved
EBP

Saved EIP for
Function1

Function1’s
Argum

ents (in
reverse order)

Function1’s Local
(defined) Variables

There can be various locations in the address space for these components!!!!

ESP

Function
1’s EBP

EI
P

.text is where binary instructions go…
The Instruction Pointer moves down the .text list until it hits
a ‘return’ instruction which sends it back to its calling
function’s binary (usually main, line below call)

Key Compiler Options: gcc
• Many compile options open holes…sometimes driver or 3rd party app

makers use them for shortcuts to avoid warnings, or use them in test
and leave them in for deployed code on accident…

• -w : ignore warnings….. (bad idea!!!!)
It is bad to use No’s for these defaults (i.e. –fno-) :
• -fstack-protector(-all): add stack protection guards (i.e. canaries..more

later)
• -fpie: Position Independent Executable
• This disables NX bit implementation:
• -z execstack

https://man7.org/linux/man-pages/man1/gcc.1.html

https://man7.org/linux/man-pages/man1/gcc.1.html

What happens when I compile and run a program
with a function
• When a program runs, it walks the machine code instruction

lines until it encounters a call to a function.
• At the call, program loads the stack like so (higher value

addresses to lower addresses):
1. Stores function arguments in reverse order (i.e. 3,2,1)
2. Stores the instruction pointer for the line after the call
3. Stores the location of the base of the stack
4. Adds a segment of memory as allocated for each variable,

strings, numbers, etc.

What happens when I compile and run a program
with a function (2)
• When the program fills the data for the variables as it runs, it

uses the allocated memory in the stack, from lower
addresses to higher addresses, so if there is more input to
the variable then allocated, it overwrites into higher
addresses

• When the function hits return instruction, it uses the stored
instruction pointer to continue into the calling function past
the call.

• If the stored instruction pointer is overwritten, it tries to use
the data that is now in that spot….usually this causes a
segmentation error

How does a stack overflow work?

• A variable, array, etc. is
assigned a size:E.g.

char mystringhere [200];

• Another part of the
program allows more
than the size to go into
the variable” like:

char myinput [600];

strcpy (mystringhere, myinput);

Function1’s Saved
Base Pointer

Saved Instruction
Pointer for

Function1 (return)

Function1’s
Arguments (in
reverse order)

Function1’s Local
(defined) Variables

mystringhere

Myinput< 200
characters

STACK

Myinput > 200
characters

If myinput is the
right size, it
overflows the
variable area, past
the saved base
pointer, into the
saved instruction
pointer … which
means I can put
anything as Saved
Instruction
Pointer!!!!

BUFFER OVERFLOW EXAMPLE: Stack Buffer
Overflow

https://ctf101.org/binary-exploitation/buffer-overflow/

hacked.c:
#include <stdio.h>

int main() {
int secret = 0xdeadbeef;
char name[100] = {0};
read(0, name, 0x100);
if (secret == 0x1337) {

puts("Wow! Here's a secret.");
} else {

puts("I guess you're not cool
enough to see my secret");

}
}

100 decimal vs 0x100
(Hexadecimal =256
decimal)
So, main can read
name more than 100
bytes…OOPS!

STACK (INITIAL):
0xffff006c: 0xf7f7f7f7 // Saved EIP
0xffff0068: 0xffff0100 // Saved EBP
0xffff0064: 0xdeadbeef // secret

...
0xffff0004: 0x0
0xffff0000: 0x0 // name

This is an example of this weakness:
CWE - CWE-131: Incorrect Calculation of Buffer Size (4.10)
(mitre.org)

With dozens of CVE vulnerabilities….

ESP

BIG NOTE: IT IS NEVER THIS EASY….THIS
EXAMPLE ASSUMES A VERY OLD OS…

Note: if 64-bit os, you need to compile as 32-bitfor these
examples.. and TURN OFF THE STACK PROTECTOR…
$ gcc –m32 –fnostack-protector –o <PROGRAM>

https://ctf101.org/binary-exploitation/buffer-overflow/

Stack Buffer Overflow (2)

https://ctf101.org/binary-exploitation/buffer-overflow/

STACK:
0xffff006c: 0xf7f7f7f7 // Saved EIP
0xffff0068: 0xffff0100 // Saved EBP
0xffff0064: 0xdeadbeef // secret

...
0xffff0004: 0x41414141
0xffff0000: 0x41414141 // name

#include <stdio.h>

int main() {
int secret = 0xdeadbeef;
char name[100] = {0};
read(0, name, 0x100);
if (secret == 0x1337) {

puts("Wow! Here's a secret.");
} else {

puts("I guess you're not cool
enough to see my secret");

}
}

Set name be 100 ‘A’’s (fyi, character A=0x41)
So
name=“AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA”
./hacked.c (with all those A’s)

ESP

ALL OK SO FAR….

0x100 (hex) = 256 decimal fyi…

https://ctf101.org/binary-exploitation/buffer-overflow/

Stack Buffer Overflow (3)

https://ctf101.org/binary-exploitation/buffer-overflow/

STACK:
0xffff006c: 0xf7f7f7f7 // Saved EIP
0xffff0068: 0xffff0100 // Saved EBP
0xffff0064: 0xdeadbe41 // secret

...
0xffff0004: 0x41414141
0xffff0000: 0x41414141 // name

#include <stdio.h>

int main() {
int secret = 0xdeadbeef;
char name[100] = {0};
read(0, name, 0x100);
if (secret == 0x1337) {

puts("Wow! Here's a secret.");
} else {

puts("I guess you're not cool
enough to see my secret");

}
}

Set name be 101 ‘A’’s (fyi, character A=0x41)
So
name=“AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA”

ESP

https://ctf101.org/binary-exploitation/buffer-overflow/

Stack Buffer Overflow (4)

https://ctf101.org/binary-exploitation/buffer-overflow/

STACK:
0xffff006c: 0xf7f7f7f7 // Saved EIP
0xffff0068: 0xffff0100 // Saved EBP
0xffff0064: 0xdead4141 // secret

...
0xffff0004: 0x41414141
0xffff0000: 0x41414141 // name

#include <stdio.h>

int main() {
int secret = 0xdeadbeef;
char name[100] = {0};
read(0, name, 0x100);
if (secret == 0x1337) {

puts("Wow! Here's a secret.");
} else {

puts("I guess you're not cool
enough to see my secret");

}
}

Set name be 102 ‘A’’s (fyi, character A=0x41)
So
name=“AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA”

ESP

https://ctf101.org/binary-exploitation/buffer-overflow/

Stack Buffer Overflow (5)

https://ctf101.org/binary-exploitation/buffer-overflow/

STACK:
0xffff006c: 0xf7f7f7f7 // Saved EIP
0xffff0068: 0xffff0100 // Saved EBP
0xffff0064: 0x41414141 // secret

...
0xffff0004: 0x41414141
0xffff0000: 0x41414141 // name

#include <stdio.h>

int main() {
int secret = 0xdeadbeef;
char name[100] = {0};
read(0, name, 0x100);
if (secret == 0x1337) {

puts("Wow! Here's a secret.");
} else {

puts("I guess you're not cool
enough to see my secret");

}
}

Set name be 104 ‘A’’s (fyi, character A=0x41)
So input for
name=“AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA”

ESP

https://ctf101.org/binary-exploitation/buffer-overflow/

Stack Buffer Overflow (6)

https://ctf101.org/binary-exploitation/buffer-overflow/

STACK:
0xffff006c: 0xf7f7f7f7 // Saved EIP
0xffff0068: 0x41414141 // Saved EBP
0xffff0064: 0x41414141 // secret

...
0xffff0004: 0x41414141

ESP -> 0xffff0000: 0x41414141 // name

#include <stdio.h>

int main() {
int secret = 0xdeadbeef;
char name[100] = {0};
read(0, name, 0x100);
if (secret == 0x1337) {

puts("Wow! Here's a secret.");
} else {

puts("I guess you're not cool
enough to see my secret");

}
}

Set name be 108 ‘A’’s (fyi, character A=0x41)
So input for
name=“AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
A”

AT THIS POINT YOU MIGHT GET A SEGMENTATION ERROR!

https://ctf101.org/binary-exploitation/buffer-overflow/

Stack Buffer Overflow (7)

https://ctf101.org/binary-exploitation/buffer-overflow/

STACK:
0xffff006c: 0x41414141 // Saved EIP
0xffff0068: 0x41414141 // Saved EBP
0xffff0064: 0x41414141 // secret

...
0xffff0004: 0x41414141

ESP -> 0xffff0000: 0x41414141 // name

#include <stdio.h>

int main() {
int secret = 0xdeadbeef;
char name[100] = {0};
read(0, name, 0x100);
if (secret == 0x1337) {

puts("Wow! Here's a secret.");
} else {

puts("I guess you're not cool
enough to see my secret");

}
}

Set name be 112 ‘A’’s (fyi, character A=0x41)
So input for
name=“AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAA”

AT THIS POINT YOU GET A SEGMENTATION ERROR!

If I substitute the
last 4 A’s
(0x41414141) with
an address in
memory, when the
function gets to the
end (return in
assembly) it will use
the substitute in the
Stored EIP’s place to
jump to the
substituted
address!!!

https://ctf101.org/binary-exploitation/buffer-overflow/

Aleph One’s famous smashing the stack paper and shellcode

• Key 1996 paper that shows exactly how to overflow the stack using
C code, and then how to insert shellcode to gain a prompt to
execute arbitrary code, including using NOPs

• Shellcode: machine language code, targeted to a particular
processor and OS, to perform a task…usually to gain a root or
admin level command shell, to execute whatever (arbitrary) code

https://www.exploit-db.com/papers/13162

https://inst.eecs.berkeley.edu/~cs161/fa08/papers/stack_smashing.pdf

Corrected paper: https://www.eecs.umich.edu/courses/eecs588/static/stack_smashing.pdf

From paper, p.18: char shellcode[] =
"\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"
"\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"
"\x80\xe8\xdc\xff\xff\xff/bin/sh”

https://www.exploit-db.com/papers/13162
https://inst.eecs.berkeley.edu/%7Ecs161/fa08/papers/stack_smashing.pdf
https://www.eecs.umich.edu/courses/eecs588/static/stack_smashing.pdf

Basic Stack Overflow Hack (Simple)

• You will need GDB… https://sourceware.org/gdb/
• Need to figure out where the stored instruction pointer is stored in

the stack, and how to overwrite it without killing the program

Set monitoring to
catch fault (SEGSEGV)

in gdb

Find vulnerable
server +
program

Send enough bytes to
cause program to

crash

Search and find
EIP/RIP location in

gdb output

Let vulnerable
program restart

Send specific number of bytes
(characters) to just overwrite the

EIP/RIP pointer in the stack
Might need NOPs…

https://sourceware.org/gdb/

Sliding using a NOP sled
• NOP is short for no operation…an operation 0x90 in machine

code that does nothing…can be anything that does
nothing…originally used to help timing/waits

• If stick shellcode into the stack, I HOPE it goes where I think it
does…however, if I pad the area in front of the shellcode with
NOPs, the EIP/RIP will just move until it gets to the right spot

• NOP Sled/NOP Ramp is used to steer execution to shellcode or
to pad the stack using a jump location to hit the instruction
pointer without killing the program…usually due to the fact
killing the program alerts the target!

https://en.wikipedia.org/wiki/NOP_slide
https://www.cs.swarthmore.edu/~chaganti/cs88/f22/lecs/CS88-F22-05-Software-Security-Attacks-Pre-Class.pdf

https://en.wikipedia.org/wiki/NOP_slide
https://www.cs.swarthmore.edu/%7Echaganti/cs88/f22/lecs/CS88-F22-05-Software-Security-Attacks-Pre-Class.pdf

Why all the memory stuff? Shellcode.
Shellcode: Payload (usually in binary for a targeted OS/processor) used
to execute an exploit for a vulnerability. Shellcode is usually inserted
into running processes so that it is executed at the same privilege level
as the targeted process. Types:
• Local: Confined to hacker directly accessed machine, usually to a

single process (initially) and works within that process
• Remote: shellcode inserted via network onto a machine on the target

network (used to establish C2, see later slides)
• Download and Execute: Shellcode hiding in a piece of software

downloaded as part of malware
• Staged: hacker loads only a loader shellcode with a pointer to the rest

of the shellcode. Includes types: Egg Hunt and Omelet

https://en.wikipedia.org/wiki/Shellcode

Once I get a shell, I
can execute arbitrary
code…

https://en.wikipedia.org/wiki/Shellcode

Shellcode Planting
There are a few options to route a program to the shellcode after an overflow:
• Using an address put into the overwritten stored instruction pointer:
1. Stick the shellcode on the stack somewhere then stick that address into the

Stored Instruction Pointer. (command line shellcode uses this)
2. Stick the shellcode somewhere else in memory then point to it
3. Stick a pointer to a pointer to code already on the system….

Variables

BP

Stored IP

Variables

BP

Stored IP

Shellcode

overflow
data

pointer to
shellcode

Variables

BP

Stored IP

Shellcode
overflow

data

pointer to
shellcode

Variables

BP

Stored IP

pointer
overflow

data

pointer to
pointers segment with return

pointer
pointer

another running
program like libc

segment with return

segment with return

those segments are also
called gadgets…

32-bit exploits vs 64-bit exploits
• Many features in 64-bit systems add security
• NX-bit, which marks memory as non-executable
• 64-bit has added registers in assembly, and

arguments are passed in those defined registers!
• Other features:

• Address Space Layout Randomization (ASLR)
• Stack Smashing Protector (SSP)/Stack Canaries

https://security.stackexchange.com/questions/169291/x32-vs-x64-reverse-engineering-and-exploit-development
https://software.intel.com/en-us/articles/introduction-to-x64-assembly
https://wiki.osdev.org/Stack_Smashing_Protector
https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/x64-architecture
https://www.intel.com/content/dam/develop/external/us/en/documents/introduction-to-x64-assembly-181178.pdf

From: “Introduction to x64 Assembly” Intel

https://en.wikipedia.org/wiki/X86-64#Virtual_address_space_details

http://6.s081.scripts.mit.edu/sp18/x86-64-architecture-guide.html

https://security.stackexchange.com/questions/169291/x32-vs-x64-reverse-engineering-and-exploit-development
https://software.intel.com/en-us/articles/introduction-to-x64-assembly
https://wiki.osdev.org/Stack_Smashing_Protector
https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/x64-architecture
https://www.intel.com/content/dam/develop/external/us/en/documents/introduction-to-x64-assembly-181178.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/introduction-to-x64-assembly-181178.pdf
https://en.wikipedia.org/wiki/X86-64#Virtual_address_space_details
http://6.s081.scripts.mit.edu/sp18/x86-64-architecture-guide.html

64-bit stack

High Memory
0xfffffffffffffff0

Low Memory
0x1111111111111111

Stack
Growth

(i.e.
added

function
s)

M
ain’s Saved RBP

.text .data .bss Heap (as needed) Stack Env/Arg

Higher addressesLower addresses

Saved RIP for
M

ain (‘0’)
Function’s Part of the Stack Main’s Part of the Stack

M
ain’s Argum

ents
(in reverse order)

M
ain’s Local

(defined) Variables

Function1’sSaved
RBP

Saved RIP for
Function1

Function1’s
Argum

ents (in
reverse order)

Function1’s Local
(defined) Variables

The order can change, and there can be various locations in the address space
for these components!!!!

CAN HAVE NX-BIT MARKING IN SOME AREAS

RSP

Function
1’s RBP

RI
P

CAN
ARY

CAN
ARY

64-bit Register example … running GHHv6 code
── registers ────
$rax : 0x0
$rbx : 0x007fffffffdef8 → 0x007fffffffe248 → "/home/brycekalel1/GHHv6/ch11/vuln"
$rcx : 0x55
$rdx : 0x14
$rsp : 0x007fffffffdd68 → "faabgaabhaabiaabjaabkaablaabmaabnaaboaabpaabqaabra[...]"
$rbp : 0x6261616562616164 ("daabeaab"?)
$rsi : 0x00000000402010 → "Ultr4S3cr3tP4ssw0rd!"
$rdi : 0x007fffffffdcf0 → "aaaabaaacaaadaaaeaaafaaagaaahaaaiaaajaaakaaalaaama[...]"
$rip : 0x00000000401301 → <auth+171> ret
$r8 : 0x0
$r9 : 0x007ffff7dc9740 → 0x007ffff7dc9740 → [loop detected]
$r10 : 0x007ffff7de6388 → 0x0010001a00001303
$r11 : 0x007ffff7f23490 → 0x41c45a7e01fa8348
$r12 : 0x0
$r13 : 0x007fffffffdf08 → 0x007fffffffe26a → "COLORFGBG=15;0"
$r14 : 0x00000000403e00 → 0x00000000401220 → <__do_global_dtors_aux+0> endbr64
$r15 : 0x007ffff7ffd020 → 0x007ffff7ffe2e0 → 0x0000000000000000
$eflags: [zero carry PARITY adjust sign trap INTERRUPT direction overflow RESUME virtualx86 identification]
$cs: 0x33 $ss: 0x2b $ds: 0x00 $es: 0x00 $fs: 0x00 $gs: 0x00

64-bit Stack example…running GHHv6 code

stack ────
0x007fffffffdd68│+0x0000: "faabgaabhaabiaabjaabkaablaabmaabnaaboaabpaabqaabra[...]" ← $rsp
0x007fffffffdd70│+0x0008: "haabiaabjaabkaablaabmaabnaaboaabpaabqaabraabsaabta[...]"
0x007fffffffdd78│+0x0010: "jaabkaablaabmaabnaaboaabpaabqaabraabsaabtaabuaabva[...]"
0x007fffffffdd80│+0x0018: "laabmaabnaaboaabpaabqaabraabsaabtaabuaabvaabwaabxa[...]"
0x007fffffffdd88│+0x0020: "naaboaabpaabqaabraabsaabtaabuaabvaabwaabxaabyaab"
0x007fffffffdd90│+0x0028: "paabqaabraabsaabtaabuaabvaabwaabxaabyaab"
0x007fffffffdd98│+0x0030: "raabsaabtaabuaabvaabwaabxaabyaab"
0x007fffffffdda0│+0x0038: "taabuaabvaabwaabxaabyaab"

Only 48 bits of memory addresses are used of 64-bits
possible by windows/linux on x86_64 (i.e. x64)

Virtual memory
address

(absolute)

Relative
memory
address
In stack
frame

Stack Canaries 101
• Stack Canaries are “ known values that are placed between a buffer

and control data on the stack to monitor buffer overflows” via wiki.
Canaries are usually a character or field. Canaries, if altered, trigger a
handling routine to prevent overflow in secure code

• Terminator canaries: uses string terminators such as NULL, LF, CF, FF.
• Random canaries: randomly generated codes to hide canaries from

attackers
• Random XOR canaries: “random canaries that are XOR-scrambled

using all or part of the control data. In this way, once the canary or
the control data is clobbered, the canary value is wrong”

https://www.sans.org/blog/stack-canaries-gingerly-sidestepping-the-cage/
https://ctf101.org/binary-exploitation/stack-canaries/

https://unix.stackexchange.com/questions/453749/what-sets-fs0x28-stack-canary
https://en.wikipedia.org/wiki/Buffer_overflow_protection
https://en.wikipedia.org/wiki/Buffer_overflow_protection#A_canary_example

M
ain’s Saved

RBP

Saved RIP
for M

ain
(‘0’)

M
ain’s

Argum
ents (in

reverse order)

M
ain’s Local
(defined)
Variables
(buffer)

CAN
ARY

BUFFER
VIOLATION!!!

https://www.sans.org/blog/stack-canaries-gingerly-sidestepping-the-cage/
https://ctf101.org/binary-exploitation/stack-canaries/
https://unix.stackexchange.com/questions/453749/what-sets-fs0x28-stack-canary
https://en.wikipedia.org/wiki/Buffer_overflow_protection
https://en.wikipedia.org/wiki/Buffer_overflow_protection#A_canary_example

Defeating Stack Canaries

• Essentially, sneak in shellcode execution without tripping the canary values in the stack that stop
return

• Trick: Find the canary values then use just enough bytes before the canary gets hit. Store canary
value then reinject it, before swapping out Stored IP.

1. Every thread for the same program has the same canary, so find the canary location, i.e. how
many bytes can we write before hitting canary location.

2. Find: Iterate values till we get smash error, though intercept error. Iteration can be using strings
of characters (e.g., set breakpoint that sets RSI before canary triggers)

3. Use pattern search to look for $rsi value…the offset here this is where the canary is located
relative to the string buffer

4. Make exploit do a try that adds $rsi offset + canary value+ padding + ROP chain in exploit

Text p.228-230
https://www.sans.org/blog/stack-canaries-gingerly-sidestepping-the-cage/
https://ctf101.org/binary-exploitation/stack-canaries/

https://github.com/GrayHatHacking/GHHv6/blob/main/ch11/exploit2.py
SFP= Saved Frame Pointer=saved RBP

RIP= Relative Instruction Pointer

Buffer Canary Stored
RBP

Stored
RIP

https://reverseengineering.stackexchange.com/questions/28059/where-stack-canary-is-located
https://stackoverflow.com/questions/47047386/how-to-pass-memory-address-of-a-location-in-stack-from-assembly

SI/ESI/RSI: Source index for string operations

https://www.sans.org/blog/stack-canaries-gingerly-sidestepping-the-cage/
https://ctf101.org/binary-exploitation/stack-canaries/
https://github.com/GrayHatHacking/GHHv6/blob/main/ch11/exploit2.py
https://reverseengineering.stackexchange.com/questions/28059/where-stack-canary-is-located
https://stackoverflow.com/questions/47047386/how-to-pass-memory-address-of-a-location-in-stack-from-assembly
https://en.wikipedia.org/wiki/String_(computer_science)

Stack Canary Payload Code (example)

payload = b"A"*72 //all the ‘a’s
payload += leak_bytes(payload, "Canary") //canary bypass
payload += p64(0xBADC0FFEE0DDF00D) #SFP //more stuff to get to
ROP pointers in stored RIP
payload += (shellcode or pointers to ROP)

Stack Smashing Protector (SSP) (a type of Canary)
• Stack Smashing Protector (SSP): Compiler option to detect stack overrun
• Uses libssp library https://github.com/gcc-mirror/gcc/tree/master/libssp

Examples from:
https://wiki.osdev.org/Stack_Smashing_Protector

void foo(const char* str)
{

char buffer[16];
strcpy(buffer, str);

}

extern uintptr_t __stack_chk_guard;
noreturn void __stack_chk_fail(void);
void foo(const char* str)
{

uintptr_t canary = __stack_chk_guard;
char buffer[16];
strcpy(buffer, str);
if ((canary = canary ^ __stack_chk_guard) != 0)

__stack_chk_fail();
}

gcc -fstack-protector
program_name

If stack is overrun (and hits
canary), runtime error = “stack
smashing detected”

https://github.com/gcc-mirror/gcc/tree/master/libssp
https://wiki.osdev.org/Stack_Smashing_Protector
https://wiki.osdev.org/Stack_Smashing_Protector

Non-eXecutable (NX) Stack
• Part of memory marked by the NX bit (SW or HW) or similar method

to be non-executable to prevent remote code execution
• Called "Data Execution Prevention" (DEP) in Windows
• ExecShield is one implementation in RedHat Linux
• Concept is to prevent exploits from using code in various blocks in

memory
• Work around: ROP!

https://en.wikipedia.org/wiki/NX_bit
https://www.exploit-db.com/docs/english/16030-non-executable-stack-arm-exploitation.pdf
https://en.wikipedia.org/wiki/Executable_space_protection
https://en.wikipedia.org/wiki/Exec_Shield

https://en.wikipedia.org/wiki/NX_bit
https://www.exploit-db.com/docs/english/16030-non-executable-stack-arm-exploitation.pdf
https://en.wikipedia.org/wiki/Executable_space_protection
https://en.wikipedia.org/wiki/Exec_Shield

ROP (Return Oriented Programming)
• Basic Concept: Return-oriented programming uses control of the call stack to

indirectly execute machine instructions or groups of machine instructions
(gadgets) immediately prior to the return instruction (ret) in subroutines
(functions) within the existing program code (loosely via Wiki)

• Some gadgets use JMP or CALL
• Return-into-library technique uses libc code already in memory in lieu of

custom shellcode
• Borrowed code chunks: attack that uses chunks of library functions, instead

of entire functions themselves, to exploit buffer overrun
• ROP Chain: Sequence of ROP exploits to execute code

https://resources.infosecinstitute.com/topic/return-oriented-programming-rop-attacks/
https://en.wikipedia.org/wiki/Return-oriented_programming

https://montcs.bloomu.edu/Information/LowLevel/Assembly/assembly-tutorial.html
https://docs.oracle.com/cd/E19455-01/806-3773/instructionset-67/index.html
https://en.wikipedia.org/wiki/Return_statement
ROP Example using libc: https://www.youtube.com/watch?v=cZKV_LZOPug

https://www.cs.cmu.edu/~rdriley/487/labs/lab03.html

https://github.com/JonathanSalwan/ROPgadget https://pypi.org/project/ROPGadget/

https://www.ired.team/offensive
-security/code-injection-process-
injection/binary-
exploitation/rop-chaining-return-
oriented-programming

https://ctf101.org/binary-exploitation/return-oriented-programming/

https://resources.infosecinstitute.com/topic/return-oriented-programming-rop-attacks/
https://en.wikipedia.org/wiki/Return-oriented_programming
https://montcs.bloomu.edu/Information/LowLevel/Assembly/assembly-tutorial.html
https://docs.oracle.com/cd/E19455-01/806-3773/instructionset-67/index.html
https://en.wikipedia.org/wiki/Return_statement
https://www.youtube.com/watch?v=cZKV_LZOPug
https://www.cs.cmu.edu/%7Erdriley/487/labs/lab03.html
https://github.com/JonathanSalwan/ROPgadget
https://pypi.org/project/ROPGadget/
https://www.ired.team/offensive-security/code-injection-process-injection/binary-exploitation/rop-chaining-return-oriented-programming
https://www.ired.team/offensive-security/code-injection-process-injection/binary-exploitation/rop-chaining-return-oriented-programming
https://www.ired.team/offensive-security/code-injection-process-injection/binary-exploitation/rop-chaining-return-oriented-programming
https://www.ired.team/offensive-security/code-injection-process-injection/binary-exploitation/rop-chaining-return-oriented-programming
https://www.ired.team/offensive-security/code-injection-process-injection/binary-exploitation/rop-chaining-return-oriented-programming
https://ctf101.org/binary-exploitation/return-oriented-programming/

ROP vs JOP vs SROP
• ROP(Return Oriented Programming): Executes code ALREADY PRESENT in

executable memory (at gadgets)
• Works in the presence of memory protections!

• JOP (Jump Oriented Programming): Inserts a pointer into executable
memory to code that is outside the stream of execution…older hack
method

• SROP: Sigreturn Orientated programming (SROP): exploit that allows an
attacker to control the entire state of the CPU and allows an attacker to
execute code in presence of security measures such as non-executable
memory and code signing.

https://resources.infosecinstitute.com/topic/return-oriented-programming-rop-attacks/

https://security.stackexchange.com/questions/201196/concept-of-jump-oriented-programming-jop
https://developer.arm.com/documentation/102433/0100/Jump-oriented-programming

https://en.wikipedia.org/wiki/Return-oriented_programming
https://en.wikipedia.org/wiki/Sigreturn-oriented_programming

https://man7.org/linux/man-pages/man2/sigreturn.2.html

https://en.wikipedia.org/wiki/Executable_space_protection
https://en.wikipedia.org/wiki/Executable_space_protection
https://resources.infosecinstitute.com/topic/return-oriented-programming-rop-attacks/
https://security.stackexchange.com/questions/201196/concept-of-jump-oriented-programming-jop
https://developer.arm.com/documentation/102433/0100/Jump-oriented-programming
https://en.wikipedia.org/wiki/Return-oriented_programming
https://en.wikipedia.org/wiki/Sigreturn-oriented_programming
https://man7.org/linux/man-pages/man2/sigreturn.2.html

Ropper (.py, and Kali command)
• Display information about binary files in different file formats,

search for gadgets to build ROP(Return Oriented Programming)
chains

• In short, disassembles an executable and can be used to search
for gadgets to find a spot to remote execute code in (normal)
executable libraries

• Note: install the Capstone engine for disassembly, along with
pyvex first

https://www.kali.org/tools/ropper/
https://scoding.de/ropper/

https://github.com/sashs/Ropper Text p. 63-4
https://gitlab.com/kalilinux/packages/ropper

http://www.capstone-engine.org/
https://www.ibm.com/docs/en/zos/2.3.0?topic=functions-mprotect-set-protection-memory-mapping

https://github.com/angr/pyvex

https://www.kali.org/tools/ropper/
https://scoding.de/ropper/
https://github.com/sashs/Ropper
https://gitlab.com/kalilinux/packages/ropper
http://www.capstone-engine.org/
https://www.ibm.com/docs/en/zos/2.3.0?topic=functions-mprotect-set-protection-memory-mapping
https://github.com/angr/pyvex

One_gadget and execve
• Gadgets are spots that can be used to insert code and open a shell to

remotely execute code, they end in ‘RETN’.
• One_gadget is a tool to jump execution to a particular spot, especially for

Remote Code Execution (RCE). i.e. execve(“/bin/sh”, NULL, NULL);
• Execve = execute program in shell

• Running One_Gadet readies the system to open the shell by finding spots in
the code (gadets) in libc.

https://pypi.org/project/one-gadget/https://github.com/david942j/one_gadget
EXAMPLES: https://dzone.com/articles/a-ctf-example-shows-you-the-easy-and-powerful-one

Text p. 62-3https://linux.die.net/man/2/execve
https://www.unix.com/man-page/osx/1/vmmap/

https://www.ibm.com/docs/en/i/7.3?topic=functions-scanf-read-data

https://pypi.org/project/one-gadget/
https://github.com/david942j/one_gadget
https://dzone.com/articles/a-ctf-example-shows-you-the-easy-and-powerful-one
https://linux.die.net/man/2/execve
https://www.unix.com/man-page/osx/1/vmmap/
https://www.ibm.com/docs/en/i/7.3?topic=functions-scanf-read-data

Ropper redux
└─$ ropper --file ~/GHHv6/ch12/vmlinux --console
[INFO] Load gadgets for section: LOAD
[LOAD] loading... 100%
[INFO] Load gadgets for section: LOAD
[LOAD] loading... 100%
[LOAD] removing double gadgets... 100%
(vmlinux/ELF/x86_64)>
(vmlinux/ELF/x86_64)> search pop rdi
[INFO] Searching for gadgets: pop rdi
[INFO] File: ~/GHHv6/ch12/vmlinux
0xffffffff810baf61: pop rdi; adc byte ptr [rax - 0x75], cl; cmp byte ptr [rbp - 0x75], cl; sbb byte ptr [rax + 0x39], cl; ret;
0xffffffff818812f7: pop rdi; adc byte ptr [rdx + 0x64541568], dl; ret;
(LOTS MORE LINES)
0xffffffff818af975: pop rdi; adc dword ptr [rbp + 0x62], esp; mov bl, 0x6b; adc dl, ch; call qword ptr [rbp + 0x64f73a70]; ret;
(LOTS MORE LINES)
0xffffffff811ad2ec: pop rdi; ret;
(lots more lines)
(vmlinux/ELF/x86_64)> search (whatever gadget you want)
(vmlinux/ELF/x86_64)> quit

Ropper looks for gadgets in a
target OS or program instance,
in this case the VM kernel
version of Linux (vmlinux an
ELF executable which it
disassembles)

Pointer to add to ROP chain;
Add together to make

shellcode (Exploit)

Bypassing non-executable (NX) stack with
ROP

ROP Example using libc: https://www.youtube.com/watch?v=cZKV_LZOPug
https://linux.die.net/man/8/execstack
https://docs.pwntools.com/en/stable/rop/rop.html

Text p. 221 to 225

https://github.com/GrayHatHacking/GHHv6/blob/main/ch11/exploit1.py

Locate base
address of libc or
similar for target

program

https://en.wikipedia.org/wiki/Glibc

https://developer.apple.com/library/archive/documentation/Performance/
Conceptual/ManagingMemory/Articles/VMPages.html

https://github.com/Wenzel/linux-sysinternals

https://www.kali.org/tools/

Build /bin/sh
(i.e. the shell) using

ROP tools using base
address

Run target
program and

open new
window to run

exploit

Duplicate
descriptor to

STDIN/STDOUT
/STDERR

Use access

https://www.youtube.com/watch?v=cZKV_LZOPug
https://linux.die.net/man/8/execstack
https://docs.pwntools.com/en/stable/rop/rop.html
https://github.com/GrayHatHacking/GHHv6/blob/main/ch11/exploit1.py
https://en.wikipedia.org/wiki/Glibc
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/ManagingMemory/Articles/VMPages.html
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/ManagingMemory/Articles/VMPages.html
https://github.com/Wenzel/linux-sysinternals
https://www.kali.org/tools/

Bypass NX with ROP Example
• -z execstack:

disables non-
executable stack
protection…therefor
e allowing stack
elements to be
shellcode

• In top compile ELF is
set to Read and
Write (RW) vs. RW
and Execute in
bottom (RWE)

run using GHHv6 code…

$ gcc vuln.c -o vuln_nx|readelf -l vuln_nx|grep -A1 GNU_STACK
GNU_STACK 0x0000000000000000 0x0000000000000000 0x0000000000000000

0x0000000000000000 0x0000000000000000 RW 0x10
vuln.c: In function ‘auth’:
vuln.c:24:5: warning: ‘read’ writing 512 bytes into a region of size 64 overflows the
destination [-Wstringop-overflow=]

24 | read(connfd, buf, 512);
| ^~~~~~~~~~~~~~~~~~~~~~

(LOTS OF WARNINGS)
┌──(brycekalel1㉿kali1)-[~/GHHv6/ch11]
└─$ gcc -z execstack vuln.c -o vuln_nx && readelf -l vuln_nx|grep -A1 GNU_STACK
vuln.c: In function ‘auth’:
vuln.c:24:5: warning: ‘read’ writing 512 bytes into a region of size 64 overflows the
destination [-Wstringop-overflow=]
(lots of warnings)
GNU_STACK 0x0000000000000000 0x0000000000000000 0x0000000000000000

0x0000000000000000 0x0000000000000000 RWE 0x10

Bypass NX with ROP Example
• Running vuln like

so puts it in a
thread in
background, on
local port 4446
(127.0.0.1 =
local to box)

• Runs until
interrupted by
^C or killed.

• Setting vuln up
so it can be
hacked by
another terminal
window…

└─$ gdb ./vuln -q -ex "set follow-fork-mode child" -ex "r"
GEF for linux ready, type `gef' to start, `gef config' to configure
90 commands loaded and 5 functions added for GDB 12.1 in 0.00ms using Python engine
3.11
Reading symbols from ./vuln...
(No debugging symbols found in ./vuln)
Starting program: ~/GHHv6/ch11/vuln
[*] Failed to find objfile or not a valid file format: [Errno 2] No such file or directory:
'system-supplied DSO at 0x7ffff7fc9000'
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".
Listening on 127.0.0.1:4446
^C
Program received signal SIGINT, Interrupt.
0x00007ffff7ed6460 in __libc_accept (fd=0x3, addr=..., len=0x7fffffffddac) at
../sysdeps/unix/sysv/linux/accept.c:26
26 ../sysdeps/unix/sysv/linux/accept.c: No such file or directory

run using GHHv6 code…

Bypass NX with ROP Example
.
[Legend: Modified register | Code | Heap | Stack | String]
───────── registers ────
$rax : 0xfffffffffffffe00
$rbx : 0x007fffffffdef8 → 0x007fffffffe248 → "/home/brycekalel1/GHHv6/ch11/vuln"
$rsp : 0x007fffffffdd68 → 0x000000004014dc → <main+474> mov DWORD PTR [rbp-0x8], eax
$rbp : 0x007fffffffdde0 → 0x0000000000000001
$rsi : 0x007fffffffddb0 → 0x0000000000000000
$rdi : 0x3
$rip : 0x007ffff7ed6460 → 0x5877fffff0003d48 ("H="?)
....
───────────── stack ────
0x007fffffffdd68│+0x0000: 0x000000004014dc → <main+474> mov DWORD PTR [rbp-0x8], eax ← $rsp
0x007fffffffdd70│+0x0008: 0x0000000000000000
….

run using GHHv6 code…

Bypass NX with ROP Example

• This is where I will be grabbing my ROP gadgets

gef➤ vmmap libc
[Legend: Code | Heap | Stack]
Start End Offset Perm Path
0x007ffff7dcc000 0x007ffff7df2000 0x00000000000000 r-- /usr/lib/x86_64-linux-gnu/libc.so.6
0x007ffff7df2000 0x007ffff7f47000 0x00000000026000 r-x /usr/lib/x86_64-linux-gnu/libc.so.6
0x007ffff7f47000 0x007ffff7f9a000 0x0000000017b000 r-- /usr/lib/x86_64-linux-gnu/libc.so.6
0x007ffff7f9a000 0x007ffff7f9e000 0x000000001ce000 r-- /usr/lib/x86_64-linux-gnu/libc.so.6
0x007ffff7f9e000 0x007ffff7fa0000 0x000000001d2000 rw- /usr/lib/x86_64-linux-gnu/libc.so.6

run using GHHv6 code…

ASLR (Address Space Layout Randomization)
• ASLR :”randomly arranges the address space positions of key

data areas of a process, including the base of the executable and
the positions of the stack, heap and libraries” via Wiki.

• Hackers need to find the positions of all areas they want to attack
or use. Makes a ROP attack harder by moving the gadgets….

• In short, the allocated virtual space is randomly used for parts of
the program

https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://www.ibm.com/docs/en/zos/2.4.0?topic=overview-address-space-layout-randomization
https://learn.microsoft.com/en-us/cpp/build/reference/dynamicbase-use-address-space-layout-randomization?view=msvc-170
https://ctf101.org/binary-exploitation/address-space-layout-randomization/
https://linux-audit.com/linux-aslr-and-kernelrandomize_va_space-setting/
https://www.cisa.gov/uscert/ncas/current-activity/2017/11/20/Windows-ASLR-Vulnerability
https://www.tomsguide.com/us/aslr-definition,news-18456.html

https://en.wikipedia.org/wiki/Address_space
https://en.wikipedia.org/wiki/Process_(computer_science)
https://en.wikipedia.org/wiki/Executable
https://en.wikipedia.org/wiki/Stack-based_memory_allocation
https://en.wikipedia.org/wiki/Dynamic_memory_allocation
https://en.wikipedia.org/wiki/Library_(computer_science)
https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://www.ibm.com/docs/en/zos/2.4.0?topic=overview-address-space-layout-randomization
https://learn.microsoft.com/en-us/cpp/build/reference/dynamicbase-use-address-space-layout-randomization?view=msvc-170
https://ctf101.org/binary-exploitation/address-space-layout-randomization/
https://linux-audit.com/linux-aslr-and-kernelrandomize_va_space-setting/
https://www.cisa.gov/uscert/ncas/current-activity/2017/11/20/Windows-ASLR-Vulnerability
https://www.tomsguide.com/us/aslr-definition,news-18456.html

ELF files Review
• ELF: Executable and Linkable Format : Standardized

defined format of a binary, ready to run, program file (or
part of an object file). ELF File=formatted using ELF.

• Has header and file data. Static (self contained) and
Dynamic (needs external data to run) types.

• ELF Header: Starts in binary with “7f 45 4c 46”. Contains
all the information to execute the file in runtime
memory, including bit type (32 bit, 64 bit), OS, processor
type, Entry Points and offsets, and string table (see Class
3 on memory)

• File Data:
• Program Headers or Segments: maps binary to virtual memory

space
• Section Headers: Defines sections in the executable file
• Data: the file data

https://linux-audit.com/elf-binaries-on-linux-understanding-and-analysis/
https://man.archlinux.org/man/elf.5.en
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

https://linux-audit.com/elf-binaries-on-linux-understanding-and-analysis/
https://man.archlinux.org/man/elf.5.en
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

Getting GOT and PLT 101
• GOT: Global Offset Table: memory used to enable an ELF

(formatted) program’s executables and shared libraries to run,
independent of the memory address where the program's code or data
is loaded at runtime….i.e. random memory assignment to make code
harder to hack.

• Maps symbols (human-readable notes, atoms) to their corresponding absolute
memory addresses

• Addresses to libc function
• Position Independent Code (PIC)
• Position Independent Executables (PIE)

• PLT: Procedure Linkage Table: links dynamic objects in programs to absolute
locations in memory. Read only section of ELF made at compile time.

https://en.wikipedia.org/wiki/Global_Offset_Table
https://en.wikipedia.org/wiki/Symbol_(programming)
https://en.wikipedia.org/wiki/Memory_address
https://en.wikipedia.org/wiki/Position-independent_code

https://www.redhat.com/en/blog/position-independent-executables-pie

https://www.intel.com/content/www/us/en/docs/programma
ble/683620/current/procedure-linkage-table.html

https://docs.oracle.com/cd/E23824_01/html/819-
0690/chapter6-1235.html

https://www.man7.org/linux/man-pages/man7/libc.7.html

https://www.man7.org/linux/man-pages/man7/libc.7.html
https://en.wikipedia.org/wiki/Position-independent_code
https://en.wikipedia.org/wiki/Global_Offset_Table
https://en.wikipedia.org/wiki/Symbol_(programming)
https://en.wikipedia.org/wiki/Memory_address
https://en.wikipedia.org/wiki/Position-independent_code
https://www.redhat.com/en/blog/position-independent-executables-pie
https://www.intel.com/content/www/us/en/docs/programmable/683620/current/procedure-linkage-table.html
https://www.intel.com/content/www/us/en/docs/programmable/683620/current/procedure-linkage-table.html
https://docs.oracle.com/cd/E23824_01/html/819-0690/chapter6-1235.html
https://docs.oracle.com/cd/E23824_01/html/819-0690/chapter6-1235.html
https://www.man7.org/linux/man-pages/man7/libc.7.html

ASLR bypass (with Information Leak)

• Combination of ROP Chain, Bypass of NX , and Defeat Stack Canary
exploits

See also Grey Hat Hacking p.228-230https://github.com/GrayHatHacking/GHHv6/blob/main/ch11/exploit3.py

https://github.com/GrayHatHacking/GHHv6/blob/main/ch11/exploit3-v2.py
https://www.fortinet.com/blog/threat-research/tutorial-of-arm-stack-overflow-exploit-defeating-aslr-with-ret2plt
https://www.man7.org/linux/man-pages/man2/mmap.2.html

Leak (get) Stack
Canary (location)

Build ROP chain that calls write PLT
function with accept file descriptor (4)

(to get write@plt pointer) from client and
address of write GOT

(get GOT entry for write in c code, jumps
to write@got location)

Modify ROP chain to
write (4,write@got)
then calculate libc

base in memory and
use it to make a

payload/hack

https://github.com/GrayHatHacking/GHHv6/blob/main/ch11/exploit3.py
https://github.com/GrayHatHacking/GHHv6/blob/main/ch11/exploit3-v2.py
https://www.fortinet.com/blog/threat-research/tutorial-of-arm-stack-overflow-exploit-defeating-aslr-with-ret2plt
https://www.man7.org/linux/man-pages/man2/mmap.2.html

PIE (Position Independent Executables)/ PIC
(Position-Independent Code)
• Code that operates properly regardless of where it is in memory
• “PIE binary and all of its dependencies are loaded into random locations

within virtual memory each time the application is executed.” (via Redhat)
to prevent exploits

• Addresses in code complied as PIE are RELATIVE versus absolute in dynamic
compiled code

• Helps stop ROP attacks…hard to figure out where to return and put code
• gcc -fstack-protector…
• In short, every time I run code, I have to re-find the gadgets….

https://www.redhat.com/en/blog/position-independent-executables-pie
https://stackoverflow.com/questions/2463150/what-is-the-fpie-option-for-position-independent-executables-in-gcc-and-ld

https://en.wikipedia.org/wiki/Position-independent_code

https://inst.eecs.berkeley.edu/~cs164/fa11/ia32-refs/ia32-chapter-seven.pdf

https://www.redhat.com/en/blog/position-independent-executables-pie
https://stackoverflow.com/questions/2463150/what-is-the-fpie-option-for-position-independent-executables-in-gcc-and-ld
https://en.wikipedia.org/wiki/Position-independent_code
https://inst.eecs.berkeley.edu/%7Ecs164/fa11/ia32-refs/ia32-chapter-seven.pdf

PIE bypass with Information Leak
• PIE bypass works by finding the RELATIVE values of key pointers, then

exploit the calculated locations given initial base values

see also Grey Hat Hacking p.230-232
https://github.com/ir0nstone/pwn-notes/blob/master/types/stack/pie/pie-bypass.md

https://github.com/GrayHatHacking/GHHv6/blob/main/ch11/exploit4.py
https://github.com/GrayHatHacking/GHHv6/blob/main/ch11/exploit3.py

Get address of
stack canary,
Saved Frame

Pointer (SFP) , RIP
(64-bit program

counter)
(leak_base)

Find program’s
base by subtracting
(leaked) RIP from

Distance to
Program Base

Assign result (program
base address) to

ELF(base) address
(relative addresses)

https://stackoverflow.com/questions/27429026/understanding-how-eip-rip-register-works

•Via Wiki x86:
•BP/EBP/RBP: Stack base pointer for holding the address of the current stack frame.
•IP/EIP/RIP: Instruction pointer. Holds the program counter, the address of next instruction

https://stackoverflow.com/questions/45112182/why-is-saved-frame-pointer-present-in-a-stack-frame

https://github.com/ir0nstone/pwn-notes/blob/master/types/stack/pie/pie-bypass.md
https://github.com/GrayHatHacking/GHHv6/blob/main/ch11/exploit4.py
https://github.com/GrayHatHacking/GHHv6/blob/main/ch11/exploit3.py
https://stackoverflow.com/questions/27429026/understanding-how-eip-rip-register-works
https://en.wikipedia.org/wiki/Stack_frame
https://en.wikipedia.org/wiki/Program_counter
https://stackoverflow.com/questions/45112182/why-is-saved-frame-pointer-present-in-a-stack-frame

Stack Overflow from User--Ring 3…in 1 slide
Vulnerable
program is

written,
compiled

Compiler
warnings
ignored,

program is
fielded

Vulnerability that
allows buffer overflow

discovered, likely a
CWE/CVE

Buffer overflow uses
NOPs and crashes

with Segmentation
Fault

Buffer overflows used
to locate stored

instruction pointer, an
offset from buffer

Buffer + NOPs to full
offset + shellcode

inserted to redirect
instruction pointer

Escalate permissions using
$ sudo, then add bot to
Command-and-Control

Network and use it

WORKS
?

NX Bits? Replace Shellcode with
pointers to gadgets (a chain) in

existing executable code like libc
(Return Oriented Programming, ROP)

Stack Canary alerts on attempt to
overwrite pointers?

Locate Stack Canary, copy its offset
location and value, then add the value at
the right spot in NOPs before ROP Chain

Addresses of stack elements or gadgets is
randomized (Address Space Layout Randomization)?

Use ELF file key parts to locate stack elements and
gadgets then fix offsets and ROP Chain pointers

Create buffer overflow, add fixed NOP
offsets with canary inserted, then fixed

ROP chain

WORKS
?

YES

YESNO Start
Over

NO
ROPPER PWNTOOLS

METASPLOIT

PWNTOOLS

NOTE:>>Hacking kernel
gets us ROOT (#)

Conclusion, do they still exist? Yes
• It is an arms race to stop exploits in OS’s…some have gotten much

harder to exploit!
• Just an intro to what happens if you don’t take care when making

code and deploy it with bad coding practices…or vulnerabilities
• Programs use the stack to store allocated variables, and if variables

are not checked or controlled the overflow takes advantage of how
code uses memory

• Most common hacks: overflow, credential stealing, XSS, others
• OS’s use processor features to try to prevent overflows: Non-

executable memory, stack canaries and also to prevent jumping code
to get shells: address-space layout randomization, position
independent execution

Basic Preso Data
Saint Louis Linux Users Group (STLLUG)

Thursday, April 20th, 2023
• from 6:30PM till 9:00PM Central Daylight Time
Saint Louis MO - STL Linux Users Group (sluug.org)
TOPIC: Stack Based Attacks in Linux

Presenter: Bryce Meyer

Stack overflows in linux: tools, methods, and vulnerabilities
Stack based attacks against 32bit and 64bit linux has become and arms race between methods to exploit
software missteps and operating system and x64 methods to stop them.
Will cover:
•how holes get in,
•compiler switches,
•an intro to return oriented programming,
•shellcode, and
•mitigation like stack canaries.

https://en.wikipedia.org/wiki/Central_Time_Zone
https://stllug.sluug.org/

Intel Processor Registers (x86 Architecture)
• Store and keep track of segments in a process temporarily
• Can be a reference to a real chip location or a virtual location on a virtual

processor (or mostly: in a virtual memory location at runtime)
• General Registers: to manipulate data, first part of a memory address
• Segment Registers: holds first part of memory address, pointers to code,

stack, and extra data segments
• Offset Registers: to hold an offset from a segment register: top of the stack

frame, bottom of the stack frame, destination data offsets (pointers)
• Special Registers: used only by the CPU
• BETWEEN VIRTUAL MEMORY AND PHYSICAL MEMORY IS A MAP

https://en.wikipedia.org/wiki/X86 See also table 2-4 in text
https://en.wikipedia.org/wiki/X86_virtualization

https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/X86_virtualization

Threat Databases and Uses
Source Time Frame Tools Notes

• SEI CERT Coding
Standards for C,
C++, Java, Perl,
and Android

• IEEE standards
(e.g., ISO/IEC
9899:2011)+

BEFORE USE:
• During coding in

development environment
• Part of DevSecOps via

static analysis

• Clang, other modern
development
environments (Eclipse,
Visual), and static
analysis tools

• Manual review

• Standards from
IEEE/IEC/ISO informed
secure coding practices and
examples in the SEI CERT
Coding Standards; secure
coding should part of an
overall code quality process

• Many map to CWEs

• MITRE CWE
• OWASP Top 10
• CWE/SANS Top 25

BEFORE USE:
• During coding in development

environment
• Part of DevSecOps via static

analysis
IN UPDATE/PATCHING

• Static analysis tools
• Manual review

• Weaknesses can lead to
vulnerabilities (CWEs can be
mapped to CVEs if a vulnerability
is found for a weakness)

• Top lists are the most likely
weaknesses for exploit

• MITRE CVE, which
feeds ATT&CK
Techniques

• MITRE CAPEC
• NIST NVD
• NSA Top 25

Before use in field:
• To patch in-use software and

systems
• As checks as part of DevSecOps

process
• When upgrades and revisions are

required to fix known vulnerabilities
in fielded code and systems.

• Static and dynamic analysis
tools

• Manual review
• Custom comparison: release to

vulnerability
• ATT&CK focuses on system

level, CAPEC on application
and software level

• Vulnerabilities can be exploited by
various hacking tools

• NVD maps CVEs with known
exploits; the worst vulnerabilities
become NSA Top 25 risks

• CVEs can have exploitation
techniques listed in ATT&CK and
in CAPEC

https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards
https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards
https://wiki.sei.cmu.edu/confluence/display/c/AA.+Bibliography#AA.Bibliography-ISO-IEC9899-2011
https://wiki.sei.cmu.edu/confluence/display/c/AA.+Bibliography#AA.Bibliography-ISO-IEC9899-2011
https://cwe.mitre.org/
https://owasp.org/www-project-top-ten/
https://www.sans.org/top25-software-errors/
https://cve.mitre.org/
https://attack.mitre.org/
https://capec.mitre.org/
https://nvd.nist.gov/
https://www.cisa.gov/uscert/ncas/alerts/aa21-209a

Arguments in Registers: 64-bit uses registers
to pass arguments into a function….
• RDI gets arg 1, RSI gets arg

2, RDX gets arg 3, RCX gets
arg4, R8 gets arg 5, R9
gets arg 6

• Arguments 7 and above
are pushed on to the
stack.

• (in 32-bit the args are
pushed onto the stack in
reverse order)

https://www.ired.team/miscellaneous-reversing-forensics/windows-kernel-internals/linux-x64-calling-convention-stack-frame

64-bit:
Function:
pushq %rbp
movq %rsp, %rbp

Main:
movq (%rax), %rax
movq %rdx, %rsi
movq %rax, %rdi
call greeting

32-bit:
Function:
pushl %ebp
movl %esp, %ebp

Main:
movl (%eax), %eax
pushl %edx
pushl %eax
call greeting

https://www.ired.team/miscellaneous-reversing-forensics/windows-kernel-internals/linux-x64-calling-convention-stack-frame

	Stack Based Attacks in Linux�(an intro)�Saint Louis Linux Users Group (STLLUG)
	Overview
	Chain of Danger (Meyer)
	Where can I find threats?
	Weaknesses of concern here
	Coding that Leads to Vulnerabilities (A few)
	Tools
	pwntools: CTF Framework and Exploit Development Library
	Compiler Warnings to prevent overflows�(in this case gcc)
	Programs run in virtual memory
	Stack Operations
	Figuring out Stack Frames
	32-bit stack
	Key Compiler Options: gcc
	What happens when I compile and run a program with a function
	What happens when I compile and run a program with a function (2)
	How does a stack overflow work?
	BUFFER OVERFLOW EXAMPLE: Stack Buffer Overflow
	 Stack Buffer Overflow (2)
	 Stack Buffer Overflow (3)
	 Stack Buffer Overflow (4)
	 Stack Buffer Overflow (5)
	 Stack Buffer Overflow (6)
	 Stack Buffer Overflow (7)
	Aleph One’s famous smashing the stack paper and shellcode
	Basic Stack Overflow Hack (Simple)
	Sliding using a NOP sled
	Why all the memory stuff? Shellcode.
	Shellcode Planting
	32-bit exploits vs 64-bit exploits
	64-bit stack
	64-bit Register example … running GHHv6 code
	64-bit Stack example…running GHHv6 code
	Stack Canaries 101
	Defeating Stack Canaries
	Stack Canary Payload Code (example)
	Stack Smashing Protector (SSP) (a type of Canary)
	Non-eXecutable (NX) Stack
	ROP (Return Oriented Programming)
	ROP vs JOP vs SROP
	Ropper (.py, and Kali command)
	One_gadget and execve
	Ropper redux
	Bypassing non-executable (NX) stack with ROP
	Bypass NX with ROP Example
	Bypass NX with ROP Example
	Bypass NX with ROP Example
	Bypass NX with ROP Example
	ASLR (Address Space Layout Randomization)
	ELF files Review
	Getting GOT and PLT 101
	ASLR bypass (with Information Leak)
	PIE (Position Independent Executables)/ PIC (Position-Independent Code)
	PIE bypass with Information Leak
	Stack Overflow from User--Ring 3…in 1 slide
	Conclusion, do they still exist? Yes
	Basic Preso Data
	Intel Processor Registers (x86 Architecture)
	Threat Databases and Uses
	Arguments in Registers: 64-bit uses registers to pass arguments into a function….

