A Brief Introduction to
Distributed Version Control

Kyle Cordes http://kylecordes.com
SLUUG October 10, 2007

You Branch and Merge.

A fundamental truth: every time you edit a
file you are branching, and every time you
reconcile with another developer you are
merging. In most tools you get one easy
branch and merge locus: your local working
directory. All other branching is a Big Deal.

It does not have to be this way.

A Short Tour of 3 tools
bzr http://bazaar-ves.org/

hg http://www.selenic.com/mercurial/
git http://git.or.cz/
Also, check your distro's package system.

What is a DVCS? Why?

e Peer-to-peer design

¢ Everyone gets all the features, rather
than the interesting features limited to
a high priest class.

o Make use of the massive CPU and disk
capacity on dev machines.

» No central server needed, though many
projects nominate a machine for this

purpose.

e Use a "dumb" storage location for a
repository, if desired. Or a "smart
server” for performance and security.

* Work offline, with full history,
branches, merges.

* No central administrator is needed,
potentially a cost savings.

e Very cheap branching, in some cases
immediate, even for large projects.

e Very good merging, because you
merge all the time.

o Commit-then-merge, not merge-then-
commit.

e Repeated merge without havoc.

e Merge keeps both sides of history,
which is important because you merge
a lot. This varies by tools, for example
apparently bzr keeps this history less
etfectively than some others.

» Depending on what you are coming
from and which tool you choose. the
speed gain can be so remarkable that it

help every developer every day.

Some SVN Nitpicks

It is easy and tempting to pick on SVN.
Linus does so vigorously in his online talk. [
don't hate it as much as he does but, these
things bother me:

e SVN is slow for large projects.

¢ Branching in SVN sounds clever as
you read its cheap copy story. It's a
great story. But actually using it is
ridiculous; both in the URL-crazy
syntax and utter lack of merge history.

* We don't need a better CVS, we need
something much better than CVS.

o svn directories scattered all over are a
pointless pain.

e _svn directories are enormous,
sometimes larger than the entire
project history in git or hg!

Security

Security is a weak area in terms of out-of-
the-box features and tutorials, because these
tools come from the open source world
where the default is for everyone to be able
to see all code. However, with a little effort
you can set up whatever security you like:

If you're serving over HTTP, you can use
Apache mod whatever to control access.

Tunnel over SSH (in the box, in most cases)
to avoid ever sending code in the clear.

Even a "dumb" storage location can be
secured with SFTP.

Scripts can be used for per-branch and other
fine grained access control, akin to what
you can do with svn-access.conf. There are
examples online.

] Can't Use a DVCS Because:

SOX/HIPPA/CMM/etc. requires a
centralized rool.

SOX/HIPPA/CMM/ete, is the standard
reason why anyone can't do anything. Some
of these tools facilitate much stronger
guarantees about the provenance of the
source code than you get from a centralized
tool, because they have credible and
straightforward ways to verify that
centralized store has not been compromized.

We are all in one place, therefore a DVCS
makes no sense.

Actually many of the features in these tools
are as useful in the same building as in a

worldwide team.

Tool ZZZ is our corporate standard.

Then you should use it, don't get fired.
However, many people are using a DVCS in
front of their corporate standard tool.

DVCS vs DVCS:

Many DVCS tools treat each
repo/workspace as a branch and vice versa,
so if you use many branches you will have
many workspaces.

bzr can use shared files to reduce the bloat
from this.

git handles many branches much better,
with arbitrarily many per repo/workspace.

My feeling is that hg and git are more
mature than bzr.

git does not work well on windows yet.
Other DVCS to Consider

Monotone — has some slick features, but
does not appear to scale well to large
projects. It stores information in a SQLite
DB. Monotone, unlike any others I've seen,
replicates all branches by default, which is
nice.

An aside — there are fascinating thoughts
on how to a data synchronization system
can work, in the Monotone docs /
presentations.

arch / tla— one of the early DVCSs that
started all this. [have heard it is mystifying
to use. '

dares — everyone loves its "cherry picking".
but I have not triedit.

SVK - optimized for being a better svn
client, with offline history and merging that
works. Stores merge history in SVN
attribute.

More git Merging
Depending on time, I will show more of the

branch / merge facilitics in git, as well as its
gitk GUIL.

Other Resources

http://wiki.sourcemage.org/Git_Guide
http://'www.adeal.eu/

11nd By 11nd 12Qg TInd 11H J1ep 01 dn 193
ysnd by TN ysnd 1zq ysnd 316 weansdn sadueyd ok ysnd
TdN SUOTD by TMN 2UOTD IZg Td0 2UOTD 3TH 193f01d Sunsixs ue 193
sobessauw, w- 3TUWOD by L9besgauw, w- JTUWOD Iz wobessaw, w- e- 3TUWOD 37H $a113 padueyd 0] Sa3UBYDO JILWO))
ppe by ppe 1z ppe 31h S3[Y MU ppy
boT by bo1 129 pot 31hH 30799
.obessaw,, w- 3TuMWOD by .obessauw,, w- 3TUOD IzZg sobessau,, w- 3TUWOD 3TH sa3ueyd / SUOTIIPPE NWWG))
ppe 6y ppe 1zq © ppe 3t1b [011U0D 30IN0S 01 SIJIJ JO 135 [RUITLIO PPy
sxoubtby- axoubTIzq" sxoubTt3yTh- diys o1 yeym 2InSyuo))
u- ppe by unI-AIp-- ppe Izg A— U- ppe 23TH ppe 31w nok jeym 335
3TUT by JTUT Xzq 3TUT 31D 1o0load mau e uvIg
LWOD “aTdwexapIasn,,
TTews I8sn btyuod 31D
WOUWENISeT
TUT " TRTINDISU/ ~ Jjuoo-IireZR(g/~ 10 ‘TO03 IND | SWeN3ISITJ, oweu-iasn BrJuocd 31hH J1osanok Ajnuapy
(¢oy 285,0UM) TIRMDOBW 318N y3IomsTainys XIen SNUTT swepN 3ig
by IZq 31tH Iser,

