
Signals: Management and Implementation

Sanjiv K. Bhatia

Univ. of Missouri – St. Louis

sanjiv@aryabhat.umsl.edu

http://www.cs.umsl.edu/~sanjiv

Signals

• Mechanism to notify processes of asynchronous

events

• Primitives for communication and synchroniza-

tion between user processes

• Processes can send signals to each other using

kill(2), or the kernel can send signals inter-

nally

• SVR2 had 19 signals while BSD had 31

Signal generation and handling

• Allow an action to be performed when an event

occurs

– Events are defined by integers mapped to

symbolic constants

∗ Symbolic constants help preserve the porta-

bility of code

– Events can be asynchronous or synchronous

Two phases of signaling process

1. Signal generation

• Occurrence of event that requires notifica-

tion to a process

2. Signal delivery

• Signal is recognized by the process and ap-

propriate action is performed

• Signal is pending between generation and

delivery

Signal handling

Default action for signal performed by kernel when

the process does not specify alternative

• Five possible default actions

1. abort

– Terminates the process after dumping core

– Process’s address space and register con-

text is written to a file called core in the

process’s current working directory

2. exit

– Terminate the process without generating

core dump

3. ignore

– Ignore all signals

4. stop

– Suspend the process

5. continue

– Resume a suspended process

• Process can override the default action and

specify an alternative signal handler method

• A process may temporarily block a signal

– A blocked signal is not delivered until it is

unblocked

– User cannot ignore, block, or specify an al-

ternative handler for SIGKILL and SIGSTOP

• Any signal handling action, including process

termination, is performed by the receiving pro-

cess itself

– Action can be taken only when the process

is scheduled to run

– On a busy system, a low priority process

may take a while to respond to a signal

– Problem may be compounded if the process

is swapped out, suspended, or blocked

• Process becomes aware of signal when kernel

calls issig() on its behalf

• Kernel calls issig()

– Before returning to user mode from system

call or interrupt

– Just before blocking on an interruptible event

– Immediately after waking up from an inter-

ruptible event

• If issig() returns true, kernel calls psig() to

dispatch the signal who

– terminates the process, generating core file

if needed

– or calls sendsig() to invoke user-defined sig-

nal handler

• sendsig()

– returns the process to user mode

– transfers control to signal handler

– arranges for the process to resume the in-

terrupted code after signal handler com-

pletes

• If signal comes in the middle of system call,

system call aborts and returns EINTR

Signal generation

• Major signal sources because of which kernel
generates signals are:

– Exception – Attempt to execute an illegal
instruction

– Other processes – Signal from one process
to another through kill or sigsend system
calls

– Terminal interrupts – Signals for foreground
processes, such as ^C, ^\, and ^Z

– Job control – Signals for the background
processes attached to a terminal

– Quotas – Signal sent by kernel when a pro-
cess exceeds its limits for resources (check
limit(1) man page)

– Notifications – Request by a process for be-
ing informed of events such as device being
ready

– Alarms – Set for a certain time so that ker-

nel informs the process via a signal upon

expiry of that time period

∗ ITIMER_REAL measures the real clock time

and generates SIGALRM

∗ ITIMER_VIRTUAL measures the virtual clock

time (when the process runs in user mode)

and generates SIGVTALRM

∗ ITIMER_PROF measures the total time used

by the process in user and kernel modes,

and generates SIGPROF

Sleep and signals

• Should the sleeping process be awakened to

receive the signal?

• Disk I/O vs. keyboard character wait

• Uninterruptible sleep

– Process sleeps for short term event like disk

I/O

– Cannot be disturbed by the signal

– Signal generated for the process is marked

as pending without any further action

– Process notices signal only when it is about

to return to user mode or block on an in-

terruptible event

• Interruptible sleep

– Process waiting for an event that may not

occur for a long time

– Wake up the process if there is a signal for

it

• Process about to block on interruptible event

checks for signals just before blocking

– If a signal is found, it is handled and system

call is aborted

– A signal after blocking the process will make

the kernel to wake up the process

– The awakened process will first call issig()

to check for signal

– issig() is always followed by psig() to check

for pending signal

Unreliable signals

• Original implementation of signals (prior to
SVR2) is unreliable

– Problem with signal delivery

– Signal handlers are not persistent and do
not mask recurring instances of same signal

– After signal occurrence, kernel resets the
signal action to default

– Users must reinstall signal handlers after
each signal occurrence leading to race con-
dition

∗ Suppose user hits CTRL-C twice in quick
succession

∗ First CTRL-C resets the signal handler ac-
tion to default and invokes the handler

∗ Second CTRL-C may not be caught if the
handler is not installed right away

– Performance problem with sleeping processes

∗ All information regarding signal handling
is stored in u_signal[] in u area, with one
entry for each signal type

∗ The entry contains the address of user-
defined handler, or SIG_DFL to specify the
default action, or SIG_IGN to ignore the
signal

∗ Kernel passes the signal to process to deal
with because it cannot read the u area of
a process that is not current process

· If the process is sleeping, kernel wakes
it up

· If the process is to ignore the signal, it
simply does so and goes back to sleep

• SVR2 lacks a facility to block a signal tem-
porarily

• SVR2 also lacks job control

Reliable signals

• Primary features

– Persistent handlers

∗ Signal handlers are not reset to default

after handling a signal

– Masking

∗ A signal can be masked/blocked temporar-

ily

∗ Kernel will remember that the signal is

blocked and not immediately post it to

the process

∗ Signal will be posted when the process

unblocks

∗ This can be used to protect critical re-

gions of the code from being interrupted

by signals

– Sleeping processes

∗ Signal handling information can be kept

in proc area instead of u area to make it

visible to kernel

– Unblock and wait

∗ Process is blocked by pause(2) until a sig-

nal arrives

∗ Another function – sigpause(2) automati-

cally unmasks a signal and blocks the pro-

cess until the signal is received

SVR3 implementation

• sigpause(2) system call

– Let a process declare a handler for SIGQUIT

signal and set a global flag when the signal

is caught

– Process waits for the flag to be set (critical

section)

– If signal arrives after check but before wait,

it will be missed and process will wait for-

ever

– Process should mask SIGQUIT while testing

the flag

– If it enters wait with masked signal, signal

can never be delivered

– sigpause(2) unmasks the signal and blocks

the process atomically

BSD signal management

• Most system calls take a 32-bit signal mask

argument, one bit per signal

– A single call can operate on multiple signals

– sigsetmask(3B) specifies the set of signals

to be blocked

– One or more signals can be added to the

set using sigblock(3B)

– In bsd, sigpause(2) automatically installs a

new mask of blocked signals and puts the

process to sleep until a signal arrives

– sigvec(3B) installs a handler for one signal,

and can specify a mask to be associated

with it

– When a signal is generated, kernel will in-

stall a new mask of blocked signal that con-

tains current mask, mask specified by sigvec(3B)

and current signal

∗ Handler always runs with current signal

blocked so that a second instance of the

signal will not be delivered until the han-

dler completes

∗ When the handler returns, blocked signals

mask is restored to its previous value

• Signals are handled on a separate stack

– Processes may manage their own stack so

that the process stack is also shared for sig-

nals

– Stack overflow itself may cause a SIGSEGV

exception

– Running signal handlers on separate stak

may resolve this problem

– C library function sigstack(3C) allows the

calling process to indicate to the system an

area of its address space to be used for pro-

cessing signals

– User should make sure that the stack is

large enough as the kernel does not know

stack bound

• Additional signals

– Required for tasks like job control

– User can run several processes, with at most

one being in the foreground

– Different shells use signals to move jobs be-

tween foreground and background

• Automatic restart of system calls

– Allowed for slow calls that may be aborted

by signals

– Exemplified by read(2) and write(2)

– These calls restart after the handler returns

instead of being aborted with EINTR

– siginterrupt(3B) allows signals to interrupt

functions, and to change the function restart

behavior

Signals in SVR4

• System calls provide a superset of svr3 and bsd

signal functionality

• Compatibility interface with older releases is

provided through library functions (check out

the man sections of calls in previous sections)

• Directly correspond to the posix.1 functions in

name, calling syntax, and semantics

Signals implementation

• Kernel must maintain some state in both the

u area and the proc structure for efficiency

– u area contains information required to prop-

erly invoke signal handlers, using the follow-

ing fields

∗ u_signal[] – Vector of signal handlers for

each signal

∗ u_sigmask[] – Signal masks for each han-

dler

∗ u_signalstack – Pointer to alternate sig-

nal stack

∗ u_sigonstack – Mask of signals to handle

on alternate stack

∗ u_oldsig – Set of handlers to exhibit un-

reliable signals

– proc structure contains fields related to gen-

eration and posting of signals, with the fol-

lowing fields

∗ p_cursig – Current signal being handled

∗ p_sig – Pending signals mask

∗ p_hold – Blocked signals mask

∗ p_ignore – Ignored signals mask

• Signal generation

– Kernel checks the proc structure of the re-

ceiving process

– Is signal ignored? If yes, kernel just returns

– If not, kernel adds the signal to the set of

pending signals in p_cursig

∗ Multiple instances of same signal cannot

be recorded

– Process will only know that at least one

instance of the signal was pending

– Process in interruptible sleep is awakened to

deliver the signal if the signal is not blocked

– Job control signals (SIGSTOP, SIGSUSP, and

SIGCONT) directly suspend or resume the pro-

cess instead of being posted

• Delivery and handling

– Process checks for signal using issig()

∗ When about to return from kernel mode

after system call or interrupt

∗ At the beginning or end of interruptible

sleep

– issig() looks for set bits in p_cursig, the

current signal being handled

∗ If any bit is set, issig() checks p_hold

(blocked signal mask) to see if the signal

is currently blocked

∗ If signal is not blocked, issig() stores the

signal number in p_sig (pending signal

mask) and returns true

– If a signal is pending, kernel calls psig() to

handle it

∗ psig() checks information in u area for the

signal

∗ If there is no handler, psig() takes the de-

fault action, possibly process termination

∗ If there is a handler, psig() adds current

signal to p_hold (blocked signals mask),

as well as any signal specified in the u_sigmask[]

vector (signals corresponding to the han-

dler)

∗ Current signal is not added if SA_NODEFER

flag is specified for the handler

∗ If SA_RESETHAND flag is specified, action in

the u_signal[] vector is set to SIG_DFL

– Finally, psig() calls sendsig()

∗ sendsig() arranges for process to return

to user mode and pass control to handler

∗ When handler completes, process resumes

code being executed prior to receiving the

signal

∗ If alternate stack is to be used, sendsig()

invokes the handler on that stack

Exceptions

• Exceptions create a trap to kernel who gener-

ates a signal to notify the process

– Type of signal depends on nature of excep-

tion

– SIGSEGV for invalid address access

– If a handler for the signal is available, it is

invoked

– Default action is to terminate the process

– Built-in exception handling for programming

languages can be implemented by language

library as signal handlers

• Exceptions are also used by debuggers

– Programs generate exceptions at break points

and upon completion of exec

– Debugger intercepts the exceptions to con-

trol the program

– Enabled by ptrace(2)

• Drawbacks to exception handling

– Signal handler runs in the same context as

exception

∗ Signal handler cannot access the full reg-

ister context at the time of exception

∗ Upon exception, kernel passes some of

the exception context to the handler

∗ A single thread has to deal with two con-

texts

1. Context of handler

2. Context in which the exception occurred

– Signals are designed for single-threaded pro-

cesses

∗ It is difficult to adapt signals for multi-

threaded environments

– ptrace(2) based debugger can control only

its immediate children

∗ Current debuggers are written using /proc

file system to allow access to address spaces

of unrelated processes

∗ This allows debuggers to easily attach and

detach running processes

Process groups and terminal management

• Used to control terminal access and support

login sessions

• Process groups

– Each process belongs to a process group,

identified by process group id

– Kernel uses this information to perform ac-

tions on all processes in a group

– Group leader

∗ Process whose pid is the same as the pro-

cess group id

– Process inherits the process group id from

its parent

– All other processes are descendants of the

leader

• Controlling terminal

– Usually the login terminal where the process
was created

– All processes in same group share the same
controlling terminal

• /dev/tty file

– Associated with the controlling terminal of
each process

– Device driver for the file routes all requests
to appropriate terminal

– In 4.3bsd, device number of controlling ter-
minal is stored in u_ttyd field of u area

– Read to the terminal is implemented as
(*cdevsw [major (u.u_ttyd)].d_read)

(u.u_ttyd, flags);

– Two processes with different login sessions
access different terminals by opening /dev/tty

• Controlling group

– Each terminal is associated with a process

group – terminal’s controlling group

– Identified by the t_pgrp field in the tty struc-

ture for the terminal

– Processes in the controlling group have the

p_grp field set to the terminal’s t_grp

– Keyboard generated signals – SIGINT and

SIGQUIT are sent to all processes in the ter-

minal’s controlling group

• Job control

– Mechanism to suspend or resume a process

group and control its access to the terminal

– Enabled by control characters (^Z) and shell

commands (fg and bg) in job control shells

– Terminal driver provides additional control

by preventing processes not in terminal’s

control group from reading/writing the ter-

minal

References

• Uresh Vahalia. Unix Internals: The New Fron-

tiers. Prentice Hall. 1996.

• Maurice J. Bach. The Design of the Unix Op-

erating System. Prentice Hall. 1987.

